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SEDIMENTATION FIELD-FLOW
FRACTIONATION: METHODOLOGICAL

BASIS AND APPLICATIONS
FOR CELL SORTING

S. Battu,1,* J. Cook-Moreau,2 and P. J. P. Cardot1

1Laboratoire de Chimie Analytique et Bromatologie,

Faculté de Pharmacie, and 2Laboratoire de Biochimie

Médicale, Faculté de Médecine, Université de Limoges,

2, rue du Dr Marcland, 87025 Limoges Cedex, France

ABSTRACT

As a cell sorter, sedimentation field-flow fractionation (SdFFF)

can be defined as an efficient tool for cell separation and purifi-

cation which respects cell functional integrity, viability, as well

as provides enhanced recovery and purified sterile fraction

collection. SdFFF elution should be performed under strictly

defined conditions concerning apparatus construction (channel

wall materials) and set up (bio-compatible ‘‘Hyperlayer’’ mode)

to obtain rapid cell elution, high recovery (negligible cell

trapping), short- and long-term viability, and sterile conditions

(cleaning and decontamination procedures). As shown recently

in various reports, specific characterization of time-dependent
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collected cells have demonstrated the effectiveness of SdFFF to

provide, in a few minutes, purified, viable, sterile cells which

can be used for many investigations such as transplantation.

Key Words: SdFFF; Hyperlayer; Cell Sorting; Cell population

INTRODUCTION

The last decades have shown the considerable development of many cell

separation techniques which have greatly contributed to many advances in life

sciences.[1–6] The principal goal in cell sorting is the preparation of a sufficient

number of identical cells with a high degree of purity, viability, and sterility.

These requirements are of the utmost importance if cells are needed for

fundamental investigations (metabolic activities, cell cycle analysis, apoptosis, or

induction of differentiation, . . . ), biotechnological applications (production of

recombinant proteins), or cell transplantation (stem cell therapy, transgenic mice).

Actually, a wide panel of techniques and methodologies are available for cell

separation and characterization, such as centrifugation, elutriation, electrophor-

esis, flow cytometry (fluorescent-activated cell sorting or FACS), or magnetic-

activated cell sorting (MACS), which takes advantages of biophysical criteria

(size, density, shape, . . . ), electrical charge, or specific antigen expression.[1–6]

Among these techniques, field-flow fractionation (FFF) methodologies,

introduced in the late 1960s by J. C. Giddings, are described as the one of the most

versatile separation techniques.[1,7–9] This chromatographic-like separation

family, such as the Sedimentation-FFF (SdFFF) sub-family, appears to be

particularly well suited for separation and characterization of micron-sized species

such as cells.[1,5,6,8,10–13] Like all other FFF methods, separation using SdFFF is

achieved by the combined action of a parabolic flow profile, generated by flowing

a mobile phase through a ribbon-like capillary channel, and of an external field

applied perpendicularly to the flow direction.[7–9,13–17] While gravitational-FFF

(GFFF) uses the Earth’s gravity, the SdFFF, also called Centrifugal- or Multi-

gravitational-FFF, uses a multigravitational external field generated by the rotation

of the separation channel in a more complex device.[7–9,13–17]

The SdFFF elution mode for cells is described as ‘‘Hyperlayer’’. In such a

mechanism, cell size, density, shape, or rigidity are involved, as are channel

geometry and flow rate characteristics. At constant flow rate and external field

strength, larger or less dense particles are eluted first.[8–10,12,14–24]

Since the pioneering report of Caldwell et al.[10] which defined most of the

basic rules and methodologies for cell separation, FFF, SdFFF, and related tech-

nologies[4,25–29] have shown a great potential for cell separation and purification

with major biomedical applications, including hematology,[10,21,29–42] cancer
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research,[25,43] microorganism analysis,[11,44–62] and molecular biology.[11,63–77]

More recently, we opened the field of neuroscience with the purification of

neurons from a complex cell matrix (rat fetuses cerebral cortices),[78] or

purification of neural undifferentiated cells from human cell lines.[79] The main

goal of our group is now to explore many cellular functional aspects, such as cell

differentiation, development, cell cycle analysis, apoptosis induction, stem cell

therapy, or transgenic mice preparation, to demonstrate the effectiveness of the

SdFFF as a safe cell sorter.

As for other preparative cell separation techniques, SdFFF must respect

cellular functional integrity and viability, as well as provide enhanced recovery

and purified fraction collection under sterile conditions. These features are easily

achieved when SdFFF elution is performed under specific conditions. Moreover,

by taking advantage of biophysical properties of cells, SdFFF appears to be a

rapid and effective cell sorting technique in comparison to labeling-dependent

methods for specific cell sorting applications, such as stem cell preparation,

culture, and transplantation.[79]

In this study, we describe the theoretical, methodological, and practical

aspects of SdFFF cell sorting.

PRINCIPLES OF SdFFF CELL SORTING

Specific Requirements

Like all other separation techniques, SdFFF cell separation and sorting

requires some specific methodological and technological features. These

requirements are needed to achieve the main goal of cell separation which is the

preparation of a homogenous cellular population whose original characteristics are

respected. Therefore, SdFFF cell purification must take into account and respect:

(1) Cell functional integrity, such as metabolism specificity, genomic and

proteomic capacity, cell adhesion properties, cell differentiation

possibilities, . . . ;

(2) High level of cell viability is needed both at short (just after SdFFF

elution and collection), and at long term for which SdFFF should not

induce cell death by apoptosis or by necrosis in cell culture or

transplantation. Limitation of cell death, apoptosis in particular,

depends both on a drastic curtailment of cell-accumulation wall

interactions, and on strict application of the cleaning procedure;

(3) Along with the first point, the maturation and differentiation stages of

eluted cells should not be altered. If the capacity for cell differentiation

can be preserved (first point), SdFFF elution process should not induce

an uncontrolled differentiation of immature or stem cells. Our previous
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results, obtained with immature neural cells,[79] have demonstrated that

SdFFF elution, performed under defined conditions, is very gentle and

respects the maturation stage for both immature and differentiated cells.

This leads to a possible comparison with other cell separation techniques

based on the use of specific cell pre-labeling (FACS or MACS). As

specific labeling is not necessary, SdFFF is particularly interesting for

applications in which labels could interfere with further cell use (culture,

transplantation), when labels do not exist or when labels could induce

cell differentiation. Thus, because SdFFF cell sorting effectiveness is

simply based on the intrinsic biophysical properties (size, density,

shape, . . . ),[8–10,12,14–24] it could provide an advantage over FACS or

MACS for stem cell sorting. Nevertheless, the off-line hyphenation of

SdFFF separation power with specific biophysical characterization by

flow cytometry could be a very effective tool.[42]

The SdFFF cell sorting must also fulfill the following requirements:

(1) High repeatability and reproducibility, particularly if routine cell

preparations are needed for culture, transplantation, or diagnosis;

(2) Maximal recovery. This is of a great importance in the case of tissue

preparation such as chicken embryo olfactive epithelium for which, in

contrast to cultured cells, sample preparation is expensive and time

consuming, to finally obtain a very small amount of usable cells.[78]

Decreased recovery should have two main origins. The first is the use

of a flow injection procedure to avoid cell sticking and channel

poisoning. This leads to a partial sample loss because some cells do not

reach their equilibrium position and are eluted in the void volume. The

second reason is linked to the small amount of cell sticking which led,

as in its irreversible form, to channel wall surface modification, causing

channel aging and poisoning. Thus, in the absence of cleaning

procedures, this leads to a decrease in recovery, in signal repeatability,

and reproducibility. Channel poisoning also results in peak shape

modification and to a possible decrease in cell viability, as in the

increase in apoptosis;[5,6,59]

(3) Finally, collected fractions must be sterile, which is essential if cell

culture and transplantation are needed. To achieve this goal, an

effective decontamination procedure has to be performed, such as

using sterile samples and mobile phases.[5,6,59,78,79]

Specific Methodologies, Instrument Setup, and Procedures

To achieve cell separation in agreement with the previously cited

requirements, specific SdFFF methodologies have been developed with the
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goal to preserve cell characteristics. These methodologies are performed to obtain

better sub-population separation in association with a drastic limitation of cell-

accumulation wall interactions which lead to channel poisoning with worst

consequences on cell integrity.[5,6,41,59,78,79] Thus, the SdFFF device and elution

conditions such as:

—channel wall materials,

— inlet tubing position and injection mode,

—mobile phase composition and flow rate,

—external field strength, and

—cleaning and decontamination procedures

must be selected and performed to reduce cell-wall interactions.

Our SdFFF separation apparatus has been extensively described and

schematized (Fig. 1).[5,6,59,78,80] Many characteristics have been developed and

improved for its bio-adaptation and to facilitate maintenance.

Channel Wall Material and Mobile Phase Composition

In many published reports,[5,6,41,57,59,80] it has been shown that cell separation

is more effective when polycarbonate plates channel wall material, and the mobile

phase supplemented with 5–10% bovine serum albumin (BSA) are used. However,

some specific cell separations were not achieved under these conditions, such as for

rat embryo cortical cells,[78] for which an irreversible and complete cell trapping

was observed (data not published). For this reason, polycarbonate plates were

replaced with 2 mm thick glass wall polystyrene plates. This very hydrophobic

material led to effective cell separation with high recovery for all cell types studied

until now, such as nucleated cells, human red blood cells, bacteria, or algae.[42,78,79]

Moreover, if polystyrene plates were used, the addition of BSA to the carrier phase

was not necessary, and no modification of retention behavior or separation

effectiveness was observed (data not published). This is very interesting, because

BSA increased channel poisoning and the risk of microorganism contamination

and, therefore, the importance of cleaning and decontamination procedures. The

use of polystyrene plates simplified the mobile phase preparation to iso-osmotic

phosphate buffered saline solution at pH 7.4 (PBS 7.4), which could be added

with a classical mixture of antibiotics and anti-fungals used in cell culture.

Injection Procedure and Inlet Tubing

The injection procedure usually used for cell separation is described as a

‘‘flow injection procedure’’, in which the sample is introduced and sorted without
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Figure 1. Schematic description of SdFFF cell sorting. A: Schematic representation of

our SdFFF device with (1) mobile phase; (2) sample and decontamination injection device;

(3 and 30) Inlet and outlet rotating seals; (4) inlet and outlet tubing; (5) centrifuge basket

with separation channel; (6) outlet tubing to detector and fraction collector; (7) motor and

speed control command. B: Example of SdFFF cell elution fractogram. Elution conditions:

flow injection of 100 mL cortical cell (107 cells=mL), flow rate: 1.24 mL=min (sterile PBS

pH 7.4, 0.1% w=v BSA, penicillin=streptomycin); external multi-gravitational field:

60� 0.01 g, spectrophotometric detection at l¼ 254 nm. TP and PFn represented the

collected fractions. ER correspond to the end of channel rotation, in this case the mean

externally applied field strength was equal to zero gravity, thus RS, a residual signal,

corresponds to the release peak of reversible cell-accumulation wall adherence.
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interruption of mobile phase flow and without a relaxation step.[41,78,79] The

relaxation step procedure, also called ‘‘Stop-flow procedure’’[1,9,41] consists in

driving the sample to the channel inlet and then stopping the flow while the

external field is applied. This procedure allows nano-sized particles to reach their

equilibrium positions, which is essential to obtain a maximal selectivity for their

separation. In the case of micron-sized species (cells), the absence of a flowing

stream offsets hydrodynamic forces; particles are then submitted only to the

influence of multigravitational forces which drive close to the accumulation wall,

and, thus, increasing cell-wall interactions and channel poisoning. Thus, the

‘‘flow injection procedure’’ appears to be the more convenient mode, but to obtain

similar selectivity, sample injection in our SdFFF device was done through an

inlet tubing directly screwed to the accumulation wall, in contrast to other

classical devices. This particular design simulated an elutriation phenomenon

which preserved high selectivity with reduced retention time, and without

increasing the channel poisoning, cell activation, or destruction.[5,6,35,40–42,78,79]

But, as explained, this injection procedure led to decreased recovery due to partial

elution of the sample in the void volume peak.

Elution Mode: Flow Rate and External Field Strength Impact

The elution mode of cells depends on the flow rate=external field balance

which generates hydrodynamic lift forces which, in turn, drive particles away from

the accumulation wall. Species are then focused into a thin layer at the equilibrium

position in the channel thickness, where the risk of cell-wall interaction is

negligible. This elution mode is called ‘‘Hyperlayer’’.[8–10,12,14–24] Flow rate and

external field strength should be selected to promote the bio-compatible

‘‘Hyperlayer’’ mode against the ‘‘Steric’’ one which can be defined as a limit

case of the ‘‘Hyperlayer’’. The ‘‘Steric’’ mode occurs when the external field can

be sufficiently increased or when the flow rate is sufficiently decreased to make lift

forces negligible, instead of the external field strength. Then, cells are confined to

a very thin layer close to the accumulation wall, which leads to harmful cell-

channel interactions. Thus, each new cell separation study should begin with a

systematic investigation of retention behavior at various flow rates and external

field strengths (Fig. 1). Then, the retention ratio Robs is systematically determined.

Robs is defined as the ratio of the void time vs. the retention time.[21,22] To

determine if cells follow the ‘‘Hyperlayer’’ mode, we measured the pattern of Robs

for the specific cell elution peak under these various elution conditions. According

to the SdFFF elution mode description of micron-sized species, Robs is flow rate

and external field dependent. At a constant field, the increase in flow rate induced

an increase in Robs, and an increase of field at a constant flow rate decreased Robs.
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Moreover, ‘‘Hyperlayer’’ mode descriptions predict that sample will not be in

close contact with the accumulation wall.[8–10,12,14–24]

By using the following equation,[14]

R ¼
6 s

o
ð1Þ

in which R is the retention ratio, o is the channel thickness, and s the distance

from the center of the focused zone to the channel wall;[15] we calculated the

approximate average cell elevation (s) using Robs values. At a minimum, s is equal

to the cell radius and particles are eluted under the ‘‘Steric’’ mode in close vicinity

to the accumulation wall.[10,14] If s is greater than the particle radius, cells are

eluted under the ‘‘Hyperlayer’’ mode.[10,14,78] But, to use this equation, it is

necessary to determine, or to accurately estimate, the mean diameter of eluted

particles and their size distribution in the different parts of the peak. Finally, other

criteria such as Sd (size distribution selectivity) determination can be used to

confirm the elution mode of the cells.[8,9,17,81] Nevertheless, the systematic study

of cell retention properties can be performed easily with abundant cellular

material, such as cultured cells, but it is more difficult if only small amounts of

cells are available, as is the case with primary cell cultures or with cells prepared

form tissues such as chicken embryo olfactive epithelium. In the latter situation,

the ‘‘Hyperlayer’’ hypothesis was estimated by determination of Robs under two

distinct conditions. The first corresponded to the usual flow=strength conditions,

and the second was conducted under more drastic conditions: lower flow rate and

higher field strength, which led to a significant decrease in Robs and, thus,

demonstrating the flow=field dependence of the retention ratio. Moreover, if the

cell radius was accurately known, it was possible to demonstrate that the average

position of cell(s) in the channel thickness was greater than the cell radius.

Finally, even if the principal aim of SdFFF cell sorting was not the

determination of the cell elution mode, it seemed to be important to demonstrate

that cells followed the biocompatible and safety ‘‘Hyperlayer’’ mode.

Cleaning and Decontamination Procedures

The effectiveness of instrument design and set up to reduce cell-

accumulation wall interactions was demonstrated first by the recovery of cells

in the corresponding elution peak (>80%). Secondly, it was shown by

conservation of cell viability which was, after SdFFF elution, similar to that of

the control population. Finally, reduction of interactions was partially demon-

strated by a very low cell release peak which was observed at the end of the

fractogram when channel rotation was stopped and the mean gravity was equal to

zero (external field applied¼ 1 g, Fig. 1). This residual signal corresponded to
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reversible cell sticking due to low interactions between cells and the accumulation

wall.[5,6,17,41,78,79] Cells could easily be released from the accumulation wall

under the effect of the mobile phase flowing, in the absence of channel rotation.

On the other hand, irreversible cell trapping, which is due to strong cell-channel

interaction, could not be reversed under these conditions. This phenomenon

cannot be observed on the fractogram and leads to channel poisoning.

This can be overcome by systematically performed cleaning and

decontamination procedures.[5,6,41,59,78,79] Some experiments (not published)

have shown that the absence of effective and systematic channel cleaning led to

many problems, in particular, an increase in apoptosis in separated cells, even

though elution conditions were set up to enhance the ‘‘Hyperlayer’’ mode,

because the small portion of definitively trapped cell die, releasing apoptotic

signal into the separator which could activate apoptosis in freshly separated cells.

The different steps and instrument setup used for cleaning and decontami-

nation have been extensively described.[5,6,41,59,80] The cleaning procedure is

based on the use of osmotic shock and injection of deproteinating agent. The use

of polystyrene plates and a BSA-free mobile phase has simplified the previous

steps[59] which are now performed as an end-of-day cleaning-decontamination

procedure. First, the PBS pH 7.4 was replaced by flushing the entire system with

sterile distilled water at high flow rate. Five void volume equivalents of a 0.22 mm

filtered protein cleaning agent (used for flow cytometry) were injected. Then, the

entire SdFFF device was flushed at 0.7 mL=min for 30 min with a 3–4� sodium

hypochlorite solution. The system was rinsed with sterile distilled water for 2 h at

2 mL=min. The system is then ready to use by replacing sterile water with sterile

PBS. By implementing this cleaning–decontamination procedure, the same

channel can be used for analysis of various cell populations without sample cross

contamination and microorganism proliferation.

In conclusion, specific instrument design (polystyrene plate, flow injection

through the accumulation wall, . . . ), optimal elution conditions (‘‘Hyperlayer’’

mode), and cleaning-decontamination procedures should allow cell separation

while respecting functional integrity, viability, recovery, sterility, and without

modification of cell differentiation.

CELL SORTING AND CHARACTERIZATION

SdFFF as a Measurement Technique

Giddings[8,9] clearly defined FFF as a measurement technique. As retention

is governed by field induced forces, retention measurements can be converted into

numerical values of forces by using specific equations.[8,9,23,24] The quantification

of these forces can be used to analyze particle properties, such as mass, size,
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density, electrical charge, diffusivity, . . . and for populations with a continuum of

properties, also described as polydispersed populations.[5,6,9] The properties can

be measured, yielding size or density distribution by using specific calibration.

This is the case for cell populations for which each measurable characteristic

(size, density, . . . ) can be associated with polydispersity. Thus, by determining

the average and variance of each parameter, it is possible to describe cell

populations using a multi-polydispersity matrix.[6]

Cell Sorting Effectiveness

Cell sorting effectiveness could be measured and demonstrated only if we

were able to separate and purify the different subpopulations of biological interest

and, as a first step, the measurement of forces did not indicate, for example, if

stem cells were sorted from the whole cell population of a specific epithelium. To

achieve this goal, we first determined the best elution conditions based on cellular

biophysical properties, and then analyzed the biological properties of the sorted

population. The elution conditions had to be designed to obtain a larger retention

time distribution corresponding to the broader peak in order to separate the

different constituents of the original polydispersed population. Nevertheless,

optimal elution conditions are a compromise between a sufficiently long elution

time to collect sorted cell populations, and between the smaller cell sticking

(Fig. 1). We performed an apparently effective cell separation supported by their

differences in biophysical properties as predicted by the ‘‘Hyperlayer’’ mode in

which size and density appeared as first order parameters.[8–10,12,14–24] However,

obtaining a broader isolated peak did not indicate whether or not cell sorting

based on the differences in biological properties was performed. Thus, time

dependent fractions were collected (three or more, Fig. 1), analyzed, and cultured

in order to characterize cell populations and to determine if previously described

requirements were respected.

Cell Population Characterization

Many off-line techniques are then available to achieve this goal; we

operated in three different and complementary directions (Fig. 1).

The first corresponded to the control of cell functional integrity including

cell adhesion and culture capacities, determination of usual metabolic activities,

and properties of cell differentiation. The second was the characterization of cell

type in order to evaluate the cell sorting efficiency. These studies depend on the

explored biological properties which were usually: specific metabolic activity,

particular expression of antigen (surface receptors, differentiation markers), the
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capacity for cell differentiation or, on the contrary, the absence of differentiation

for stem cells, specific size distribution, specific apoptosis behavior, the cell

cycle, . . . .[36,39,42,47,57,59,78,79,82] Cell short- and long-term viability were assessed

to determine if the elution process induced cell death and, in particular, a specific

apoptosis.[78,79]

These studies were performed on each collected fraction (Fig. 1) and results

were compared with control population. Two types of fractions were analyzed

(Fig. 1):

(1) the total peak fraction (TP) which corresponded to collection of the

entire cell elution peak (without void volume and release peaks). It

represented the whole cell population after SdFFF elution; and

(2) specific peak fractions (PFn, Fig. 1) which represented a part of the

cell elution peak.

One important point was to verify if the TP fraction behaved similarly to

controls. This could indicate that differences observed between control and PFn

fractions were a direct consequence of SdFFF elution efficiency to promote cell

sorting by only taking advantage of biophysical properties.[8–10,12,14–24] If control

and TP fractions behaved similarly, this demonstrated that cell sorting was not

effective due to non specific phenomena, such as a selective sub-population

killing, apoptosis induction, or irreversible cell trapping in the separator. If

control and TP fractions properties were similar, it showed that cell sorting

depended only on the difference in cell size, density, volume, or shape as

predicted by the ‘‘Hyperlayer’’ elution mode.[8–10,12,14–24]

Finally, the association between retention parameters (biophysical proper-

ties) and specific biological markers led to the concept of a multi-dimensional

hyphenated fractogram.[42]

CONCLUSION

SdFFF now appears as a mature technique for cell sorting in many

biological applications. In principle, it can be defined as simple to use, to set up,

and less expensive than many other cell sorting systems. Unfortunately,

significant development and diffusion have not yet been achieved. This could

be explained, first, by the small number of published studies and, secondly, it

could be due, in part, to the lack of a specific commercial device which led each

research group to develop or to adapt their own. Nevertheless, (1) because SdFFF

takes advantage of intrinsic biophysical properties of cells and combines the

possibilities of flow-driven separation techniques (elutriation, chromatography)

and of field induced and focusing techniques (electrophoresis, centrifugation);

(2) elution and sorting is very fast (less than 15 min); and (3) because the device
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can be easily and rapidly set up (less than two hours) to obtain optimal elution

conditions for each new separation problem.

SdFFF could be more useful than many other cell sorters to provide

purified, viable, and usable cell fractions.
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